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I. Introduction

Since upper air maps are prepared every six or twelve hours,
it is necessary when computing trajectories from the wind field
to make an estimate of the field of motion at intermediate
times. Several techniques for accomplishing this interpolation
of the field of motion in time are available.\ It was desired
to study the errors which might be introduced by two of the
simplest techniques. The most frequently-used trajectory
interpolation procedures are identified by the phrases "Mid-point
of successive streamline"” and "Central tendency" methods. The
former is illustrated graphically in Figure 1 and the latter in
Figure 2 for the case of l2-hourly upper air maps.

To determine which of the methods is a superior technique,
very simple mathematical models of airflow patterns were
established from which the true trajectory could be computed.
Further, by employing the mathematical definitions of the two
techniques, the end points of the trajectories at given times
were found. A comparison of these end points with the
corresponding end point determined from the true trajectory
yields the error which the approximate interpolation technique
produces.

II. Constant Linear Wind Fields
A. Rotation - A field of pure rotation is described by

the equations:

dx/dt - by,
dy/dt = b (x-ct). (1)
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Where b is the coefficient of rotation, c is the trans-
latory velocity of the axes of rotation in the

X~direction and t is time.

1. True trajectory - A solution of (1) which

gives the true trajectory of a parcel is:

- (y, + c/b) sin bt + x,co8 bt + ct,
sin bt + (y, + ¢/b) cos bt - c/b,

X

y
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where x_, ¥ , are the coordinates of the

%) 0
parcel at time t = O. Equations (2) give the

true coordinates along the trajectory at

any time.

2. Mid-point of successive streamlines method -

In the computation of trajectories by the
mid-point of successive streamlines method,

it is assumed that:
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Xn (xl + Xg) //2:
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(yl + }’2) /2)

where X ym’ are the computed coordinates
of the trajectory at the time of the second

map; xl, yl the displacement as measured

from the first map only; and X the
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displacement as measured from the second

(2)
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map. Since on any one map the systems are

stationary, from the first map:

Xi =Y, sin bT + X, cos bT,

Vi = X éin BT + Yo cos bT,

and from the second map:

]
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-y, sin BT + (xo - cT) cos BT + cT,

£<
i

(x, - cT) sin BT + ¥, cos bT,

where T is the time interval between maps.
The coordinates of a point along the tra-
Jjectory at the time of the secqnd map are,
according to the mid-point of successive

streamlines method:

I

-¥, sin bT + (xo - ¢T/2) cos BT + cT/2,
v, = (xo - gT/2) sin BT + y_ cos bT.

As can be seen from a comparison of
equations (2) and (6), the deviation of the
computed from the true position is independent

of the initial coordinates X, and Vo since:

-(c/b) sin BT + (cT/2) (cos BT +1),
(cT/2) sin BT + (c¢/b) (cos T - 1).

A-Xm

Y - p

Central tendency method - In computing tra-

Jectories by the central tendency method, the
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particle is followed on the first map for
a time interval of T/2 and on the second
map for the remainder of the interval
between maps.

x) = -y, sin bT/2 + x_ cos bT/2, (8)
yi sin BT/2 + y, cos BT/2,

X0

where xi, yi are the coordinates at time
T/2 after the time of the first map. The
coordihates of the parcel, xc, yc, at the
time of the second map, as computed by this

methed, are:

»
i

-y, sin bT/2 + (xi -cT) cos bT/2 + cT

¥, sin BT + X, cos bT + cT (1 - cos bT/2), (9)
(xi -cT) sin bT/2 + y; ¢os bT/2,

x, sin bT + y_ cos bT - cT sin bT/2.
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Again, the deviation of the computed trajectory

from the true path is not a function of X yo:

(=c¢/b) sin BT + cT cos bT/2,
(e/b) (cos BT -1) + cT sin bT/2.

X - X
c

Y- v,

(10)

Deformation - A field of pure deformation is described
by the equations:

dx/dt
dy/at
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where e is the coefficient of deformation and the
other notation is identical to that of the preceding

section. A solution of (11) is:

1]

X

y

(¥, - c¢/e) sinh et + x, cosh et + ct, (12)

i

x, sinh et + (y, - c/e) cosh et +c/e.

With a development exactly analogous to that of
the preceding section, the expressions obtained for
the coordinates of a trajectory computed by the

mid-point of successive streamlines method are:

i

Xy =y, sinh eT + (2, = cT/2) cosh eT + cT/2,
Ym = (X5 - cT/2) sinh eT + y, cosh eT,

(13)

and the deviations are:

-c/e sinh eT + (cT/2) (1 + cosh eT), (14)
-c/e (cosh eT -1) + (cT/2) sinh eT.

X = Xp
y'ym

i

Similarly, for the central tendency method:

X = ¥, sinh eT + x cosh eT + cT (1 - cosh eT/2),

e (15)
Yo = X, sinh eT + y, cosh eT - cT sinh eT/2,
and
x - x, = -(c/e) sinh eT + cT cosh eT/2, (16)
Y - ¥, = cT sinh eT/2 - (c/e) (cosh eT ~ 1)

Again, it is seen that for both methods the
deviations from the true trajectory are independent

of the initial coordinates.
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Divergence - A field of pure divergence is described
by the equations:

a(x - ct),

dx/dt
dy/dt = a y,

where a is the coefficient of divergence and the
other notation is identical to that of the preceding

sections. A solution of (17) is:

X, - c/a eat + ¢t + c/a,
(o]

y = yo eat
where e = 2.71828 (Base of natural logarithms).

Again, with a development analogous to that of
section 2, the expressions for the coordinates of
a trajectory computed by the mid-point of successive

streamlines method are:

x_ = x_ e 4 (cT/2) (1 - &oT),
m (o}

_ . ool
Im = Yo

and the deviations:

X -x = (et/2) (1 + €2T) + (c/a) (1 - Ty,
Y=~ ym=0.

Similarly, for the central tendency method:

X
c

aT
x € +eT (1 - eaT/E))
e}

YQ=yoe)

(17)

(18)

(19)

(20)

(21)



and

i}

X - X, (c/a) (L - eaT) + cT eaT/2)
¥y =¥, =0.
Also, in this case, the deviations are independent

of the initial position.

III. Varying Linear Wind Fields

In addition to constant fields of rotation, deformation, and
divergence, it is also possible to treat cases in which such
fields vary linearly with time; For simplicity, it is assumed
that ¢ is zero (i.e., that the axes of the field are stationary)
in all cases investigated in this section.

A. Rotation - If'we assume that the coefficient of

rotation varies linearly with time from zero to

a value of b in time ©, then by definition:

Substituting in (1) and letting c = O

dy/dt = b' tx.

Solution of (2&) yields for the true
trajectory:

2
X = -y_ sin b't2/2 + x_ cos b'tT/2,
o (o]

(25)
x, sin b't%/2 + y_ cos b't2/2.

]
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If T is the time interval between maps and the
coefficient of rotation varies linearly from zero
to a value of b in this interval, the coordinates
of the true trajectory at the time of the second

map are, from (23) and (25):

»
i

-y, sin bT/2 + x  cos bT/2,

X, sin bT/2 + y, cos bT/2.

 From equations (26), the trajectory as determined

from the mid-point of successive streamlines method

can be found in a manner analogous to that of the
preceding sections:

X, -(yo/2) sin BT + (xy/2) (1 + cos bT),
Iy = (XO/E) sin BT + (yo/2) (1 + cos bT).

Similarly, for the central tendency method:

"
1l

-y, sin bT/2 + x, cos bT/2,

x, sin bT/2 + y, cos bT/2.

Je o

Deformation -Proceeding as in the case of rotation,

for a linearly varylng deformation field, let:

e' = e/t

Then, if c is zero, from (11):

dx/dt
dy/dt

e'ty,

e'tx,

(26)

(27)

(28)

(29)

(30)
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which yields for the true position at the time

of the second map:

=y, sinh eT/2 + x_ cosh eT/2, (31)
= X, sinh eT/2 + y_ cosh eT/2.
Applying the mid~point of successive streamlines
method;
x = (yo/2) sinh eT + (xo/a) (L + cosh eT), (32')
V= (xo/z) sinh eT + (yo/e) (1 + cosh eT).
and for the central tendency method:
Xo = ¥, sinh eT/2 + x, cosh eT/2, (33)
Yo = X, sinh eT/2 + y, cosh eT/2.
Divergence - Similarly, for the case of a linearly
varying field of divergence, let:
a' = a/t. (34)
Then, if ¢ is zero, from (17):
dX/dt = a'tx, (35)
dy/dt = a'ty,
which yields for the true positioh at the time of the
second map:
x = % eaT/z,
(36)

yoeaT/E_

e
i
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Applying the mid-point of successive streamlines

method:
x = (x/2) (1 +e2T), (37)
m = (¥,/2) (1 + &T),
and for the central tendency method:
% = % 2 (38)
Y. = e eaT/E,
It should be noted that in all the above cases
involving linearly varying fields, the deviations
of the computed trajectory from the true value are
dependent upon the initial coordinates.’
IV. Sinusoidal Wind Fields
A more realistic, yet simple, mathematical formulation of
flow patterns in the atmosphere, especially at upper levels,
is obtained by assuming a sinusoidal variation in the north-
south component of the wind field superimposed on a constant
west-east zonal current. If the axes are orieﬁted so that
the positive x-axis points toward the east and the positive
y-axis towards the north, then:
= dx/dt = U, (39)
= dy/dt = A(t) sin 2n(x - ct)/L,

where:

<
1]

constant zonal speed,

A (t) = amplitude factor (maximum value of
the north-south component of the wind),

[
il

wavelength,

speed of the wave in the x-direction,

t = time.
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Equations (39) can be solved with a variety of functions for
At).

A. Constant amplitude - For a wave moving in the

x-direction with no changes in shape, the

amplitude factor A (t)is equal to a constant,
A,
for the true trajectory:

For this case, a solution of (39) yields

X=Ut +x,
©
= AjL/2nc' [cos 2nx,/L - cos an(x  + c't)/L ] + y,,

<

where Xq
at t = 0, and ¢' = U - c.

For the mid-point of successive streamlines
method, i1f T is the time interval between maps,

from the first map:

xl:.:UT'*'XO,
Y1 = AjL/2nU fcos 2mx /L - cos 2x (x, + UT) /L] + Yo

and from the second map:

X2=UT+XO,

and Yo are the coordinates of the trajectory

(ko)

(k1)

(42)

Yo = AL/2nU [cos 2xn (x5 = eT)/L - cos 2n (x, + c'T)/L] + g

The coordinates of the trajectory at the time of the

second map are, by this method:
Xn = UT + X

Yy = AJL/MnU [cos 2nx_/L - cos 2r (%, + UT)/L +
cos 2nt (x, - cT)/L - cos 2n (x, + ¢'T)/L / + I

(43)
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Applying the central tendency method, the
coordinates of the trajectory at time T/2, as

obtained from the first map, are:

UT/2 + x,

aL/eny {cos emxy/L - cos 2x/(UT/2) + x, //L} Y,

The coordinates at the time of the secnnd map;
obtained by moving the particle from its position
at time T/2 to its position at time T along the

streamlines of the second map are:

UT/2 + xq,

A L/2xU {cos 2n (%7 - eT)/L = cos 2r [x; - cT +
(Uz/2) 7/1}  + v,

or:

UT + %,

A L/2xU {cos en [x, + (UL/2) - T /L -
cos 2r (x, + ¢'T)/L + cos 2nx /L - cos 2x [{UT/2) +

xh7/L} + Yo

Linearly varying amplitude - If it is assumed that

the amplitude factor varies linearly with time,

it can be represented by:

Alt) = A+ AT,

(Lk)

(45)

(46)

(L7)
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where Ab is the value of the amplitude factor at
time € = O and Al is its rate of change. From
(39), it is seen that the equations describing

the trajectory in this case are:

dx/at
dy/dat

U,
(A, + Alt) sin 2x (x - ct)/L

il

Solution of (48) yields for the true trajectory:

i

Ut + Xy

L/2nc' /A cos 2nx /L - (A, + At) cos

2nt (c't + XO)/L;7 + Ang/(Enc') [sin 2n (e't +
X5)/L - sin 2ax /L 7 + ¥,

In a manner analogous to that of the preceding
section, results for the mid-point of successive
streamlines method and for the central tendency

method may be found.

It should be noted that in all the cases
involving sinusoidal streamlines, the x-component
of the wﬁnd was considered constant, so that both -
trajectory methods agree with the true value for
the x-coordinate of the trajectory, the deviations

occur only in the y-coordinate.

(48)

(49)



IV. Results

Table I illustrates the errors for a given set of numbers for
the parameters describing the particular characteristic of the
field of motion in question. It 1s seen from the illustration
that the central tendency method produces the lesser error in
all cases. .It is concluded that to the extent to which the
fields of motion noted in Table I are applicable to the atmosphere,
the central tendency method produces smaller errors thah the

mid-point of successive streamlines.



TABLE I.

15

Trajectory Errors After 12 Hours in Nautical Miles

Trajectory Computation Method

Wind Field
Mid-Point of Central
Successive Streamlines Tendency
Linear wind fields moving
at 20 knots and coeffi- 1
cients a = b= e = 0.1 hr.”
Rotation 28 14
Deformation Lo 20
‘Divergence 5k 27
Stationary linear wind fields
growing from O to 0.1 hr.=L1
in 12 hrs. N
Rotation [ non-zero except at Xq = 0.
Deformation 1Yo = 0; error depends 0
Divergence L-on starting_position. o)
Sinusoidal wind field, wave
length, 3770 n. miles; zonal
wind, 60 knots; strongest
N-S wind, 60 knots, c=20 knots.
Start at trough or ridge 14 2
Start at point of inflection 3k 5
Same as C., except that _
strongest N-S wind grows from
0 to 60 knots in 12 hours.
Start at trough or ridge 11k 11
Start at point of inflection 28 7




FIGURE 1

Maps A and B are twelve hours apart. The lines labelled h, h + 1, h + 2...
are streamlines but may be considered to be height lines on a constant
pressure surface. Particle starts at P at the time of Map A in the
direction toward 4 but ends at Q" in twelve hours moving along the

dotted line in the lower chart. The distance PQ and PQ' are twelve

hours of air motion.

FIGURE 2

Maps A and B are twelve hours apart. The lines labelled h, h + 1,

‘'h + 2.... are streamlines but may be considered to be height lines on
a constant pressure surface. Particle starts at BAt the time of

Map A moving for six hours parallel to its stre ines to Q'.
Position Q' is located on Map B and continued for six more hours
parallel to streamlines on Map B to Q". The curve PQ' Q" is the
twelve hour path. '
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FIG. 2 CENTRAL TENDENCY METHOD




